Однако не каждая вырезанная из стали заготовка есть уже готовая деталь. Ее иногда нужно согнуть по форме корпуса парохода. Простую погибь делают на гибочных вальцах. А для гибки ребер корпуса есть специальные станки. Все это довольно легкие и быстрые операции. Другое дело, когда листу надо дать сложную погибь — и вдоль и по ширине. Раньше такую гибку делали только вручную. Сначала нагревали листы до белого каления, а потом выколачивали тяжелыми молотами по особым каркасам. Это была очень тяжелая и долгая работа. Для ее выполнения требовалась целая бригада самых опытных и сильных гибщиков. Теперь же листы гнут в холодном виде на гидравлических прессах. Такой пресс стоит недалеко от газорезательной машины. Высотой он с двухэтажный дом. На его пульте управления множество всяких ручек и приборов. В передней части пресса движется вверх и вниз большой поршень. Его называют пуансоном. Пуансон с большой силой давит через специальные штампы на стальной лист. Несколько нажимов пуансона — и лист приобретает любую сложную форму погиби. Сила давления у некоторых прессов достигает 2000 тонн.
Обработанные детали проверяет контролер, после чего их сдают на склад. Со склада они, по мере надобности, отправляются в сборочно-сварочный цех. Там из них собирают конструкции корпуса парохода. Как видите, судостроительная сталь, прежде чем сделаться готовой деталью, проходит три — четыре операции. А всего лет пятнадцать назад такому же куску стали надо было пройти десять — двенадцать операций. Корпусообрабатывающий цех завода был до отказа заполнен различными станками и прессами. Почти все они существовали для того, чтобы обслуживать клепку. Тут были дыропробивные прессы и станки для сверления в деталях отверстий под заклепки. Тут были строгальные станки для строжки кромок листов после грубого реза на пресс-ножницах. Были и станки, отгибающие фланцы (бортики) у концов листов, опять-таки для плотности заклепочных соединений. Было много и других грохочущих, громоздких станков. Теперь большинство из них исчезло.
Что же случилось в судостроении? Что могло ликвидировать множество станков, сократить число операций обработки судостроительной стали и этим самым ускорить постройку пароходов? Причиной этого явилась электросварка металлов, заменившая собой клепку.
Конечно, разговор пойдет не о той дуге, которая нужна, чтобы запрячь лошадь. Наша дуга совсем маленькая — длиною не более 3–4 миллиметров. И служит она для соединения отдельных частей металлических конструкций. Эту дугу можно увидеть повсюду: в усадьбах машинно-тракторных станций, при прокладке газопроводов, на строительстве мостов и пароходов. Что же это за дуга? Давайте понаблюдаем за действиями рабочего, создающего такую дугу. Только наденем очки с темными стеклами, чтоб не испортить глаза. Вот рабочий поудобнее устроился у пригнанных друг к другу деталей. Вот он тоже прикрыл глаза щитком с темными стеклами, а правой рукой сжал ручку со вставленным в нее электродом. А к электроду тянется, как змея, толстый серый провод от источника тока. Свариваемая конструкция заземлена. Тут получается как бы электрическая цепь. Пока электрод не касается изделия, цепь разомкнута, ток выключен. Вот сварщик чиркает электродом по металлу, как спичкой о коробку, и слегка отводит электрод от металла. Сверкнули искры, а потом между электродом и металлом вспыхнула ослепительная дуга. Направляемая рукой рабочего, она медленно поползла вдоль стыка деталей. Ее пламя невыносимо для человеческих глаз. И это неудивительно: температура дуги достигает 3500°. Это только в полтора раза меньше температуры раскаленного солнца. От такой температуры кромки деталей и электрод быстро расплавляются и детали свариваются.
Вот рабочий отвел кончик электрода от металла на расстояние больше, чем 3–4 миллиметра. Электрическая цепь размыкается — и дуга гаснет. Теперь можно беспрепятственно любоваться чудесной работой нашей дуги. Она образовала на стыке деталей блестящую чешуеобразную дорожку — шов. Шов накрепко соединил в одно целое обе детали. Такой способ соединения называют дуговой электросваркой.
Электросварку впервые в мире применил русский изобретатель Н. Н. Бенардос в 1882 году, а его способ усовершенствовал несколько позже другой изобретатель — Н. Г. Славянов. У электросварки большие преимущества перед клепкой и другими способами соединения деталей. Возьмем, к примеру, клепку корпуса парохода. Она была невозможна без применения множества соединительных угольников, стыковых планок, стальных прокладок. Уйму металла и средств тратили на изготовление этих вспомогательных деталей. При электросварке они все не нужны. А сколько металла и труда затрачивалось на клепку! Например, при постройке арктического ледокола в его корпус забили до миллиона заклепок. И для этого потребовалось просверлить два миллиона отверстий в деталях корпуса. При электросварке не надо ни отверстий, ни заклепок. А сколько времени и средств отнимало уплотнение заклепочных швов, или, как его называют, чеканка. Сварной шов не требует этой работы, он гораздо прочнее и плотнее заклепочного шва. Клепку выполняла целая бригада из трех и даже четырех рабочих. А при электросварке работает один рабочий.
Представляете теперь, сколько сберегает электросварка металла, рабочей силы и денег?
Еще быстрее и прочнее сваривают части корпуса парохода сварочными автоматами. Чаще всего встречается сварочный автомат «Трактор». Только не подумайте, что это настоящий трактор. Таким тракторов землю не вспашешь, — он слишком маломощный. Не одолеет он и большого уклона. Да и по размерам и устройству он мало похож на настоящий трактор. Зато стальные детали он сваривает замечательно.